Positional Vertigo

Timothy C. Hain, MD

Departments of Neurology, Otolaryngology and Physical Therapy Northwestern University, Chicago, IL

Definition of Positional Vertigo

- Sensation of motion
- Elicited by changing of position of head or body
- With respect to one another or gravity

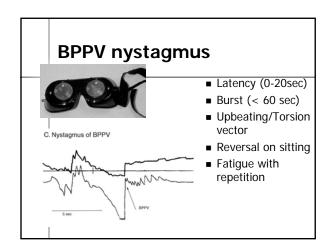
Frames of reference

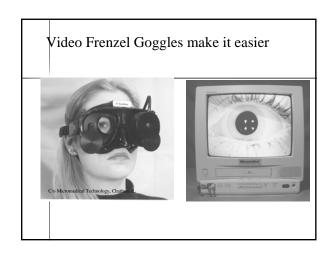
Head r.e. gravity
otologic and central positional vertigo
Head r.e. body (trunk)
cervical vertigo
Body r.e. gravity
orthostasis

Head r.e. Gravity

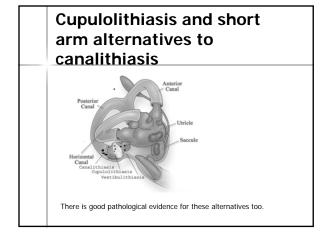
Head gravity Head on trunk Body:gravity

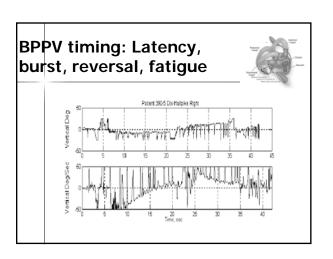
- Benign paroxysmal positional vertigo
- Peripheral otolithic disturbance
- Central otolithic disturbance


Case SH


- 61 y/o slipped and fell, hitting back of head
- LOC for 20 min
- In ER, unable to sit up
- Hallpike maneuver positive on left

Dix Hallpike was positive

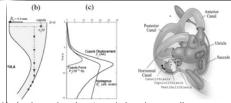




Prevalence of BPPV is high

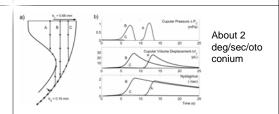
- 20% of all vertigo
- 50% of vertigo in older persons.
- · Linear increase with age!
- 85% of all positional vertigo

BPPV Mechanism canalithiasis (loose rocks) Posterior Semi-Circular Canal Utricle Sancule Otoconia Displaced Otoconia

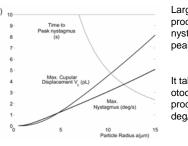


Mathematical Model of BPPV:

■ Squires T, Weidman M, Hain T, Stone H. A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. J. Biomech. vol. 37, issue 8, pp 1137-1146, 2004


Mechanism of Latency and fatigue of BPPV

- Hydrodynamic advantage is less in ampulla
- Margination -- fatigue


Squires T, Weidman M, Hain T, Stone H. A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. J. Biomech. vol. 37, issue 8, pp 1137-1146, 2004

Path also affects latency

 Long latency for eccentric particles due to wall effects and collisions. No nystagmus for case 'C' which hits wall before entering duct

Bigger particles produce stronger nystagmus

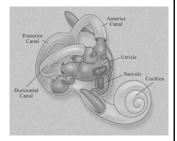
Larger particles produce stronger nystagmus that peaks later.

It takes 20 7.5um otoconia to produce about 45 deg/sec

Cupulolithiasis produces <u>less</u> nystagmus/otolith

- Debris attached to cupula
- No hydrodynamic amplification
- Low level nystagmus (0.6 deg/sec per otoconium vs 2 overall for canalithiasis).
- Should build up due to cupula dynamics and velocity storage.

Squires T, Weidman M, Hain T, Stone H. A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. J. Biomech. vol. 37, issue 8, pp 1137-1146, 2004


Inertia of otoconia is unimportant to diagnosis or treatment

- PositionAL vs PositionING. Does this matter ?
- In theory, not very much.
 - Stokes velocity for 1 g acceleration is 0.2 mm/sec
 - Large radius of canal is 3.2mm, so diameter is roughly 20mm.
 - Particle only moves 1% of diameter in 1 second.

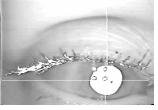
BPPV Variants

Ewald's first law: eye movements occur in the plane of the canal being stimulated. Three canals → three vectors.

- Posterior canal
- Lateral canal
- Anterior canal

Vector of nystagmus tells you the variant of BPPV

Posterior Canal (94%) ■ Upbeating/Torsion



Vector of nystagmus tells you the variant of BPPV

Lateral Canal (5%)

Horizontal DCPN

In theory, should rarely have latency

Diagnosis of Lateral Canal

- Best position is not head-hanging but head up 30 degrees (to make lateral canal perpendicular)
- Can be either geotropic or ageotropic
- Should reverse direction r.e trunk with head forward (if doesn't, is cervical)

Vector of nystagmus tells you the variant of BPPV

Anterior canal (1%)

Downbeating

In theory, should always have latency

Mixed canal variant BPPV

- Mixed canal
 - Debris in more than one canal
 - Signature nystagmus revectors over time (i.e. starts posterior, changes to horizontal).

BPPV Summary

- BPPV is easily diagnosed (Hallpike maneuver)
- Anatomic locations explain nystagmus patterns, and have specific maneuvers.

Positional nystagmus -- Head r.e. Gravity

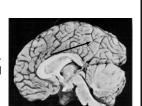
- BPPV
- Central otolith AKA central positional nystagmus
- Peripheral otolith

Central Positional Nystagmus

BPPV Central Peripheral otolith

- Otoliths are the only sensor available to brain regarding orientation to gravity
- Central otolith processing mainly occurs in midline cerebellum.

This child is holding onto the bed rail due to ataxia from a medulloblastoma


BPPV Central Peripheral otolith

Cerebellar Medulloblastoma

- Mainly affects children
- Begins in cerebellar nodulus -vestibulocerebellum
- Hydrocephalus (projectile vomiting) and cerebellar signs.
- STRONG positional nystagmus

Central positional general rules

BPPV Central Peripheral otolith

- Generally horizontal
- Direction changing (like lateral canal)
- Non-fatiguing
- Does not revector with maneuvers
- Accompanied by other central signs (e.g. ataxia)

Head r.e. Trunk (e.g. Cervical Vertigo)

- Circulatory disturbance
- Pain/spasm in neck
- Cervical disk disease

Core symptom of cervical vertigo

 Symptoms provoked by head-on-trunk movement, regardless of position r.e. gravity.

Core bedside test for cervical vertigo: Vertebral Artery Test (VAT)

- Using Frenzel goggles
- Person sitting upright
- Turn head to one side
- Hold for 20 seconds
- Watch for nystagmus.

Bow Hunter's Syndrome (very rare)

Circulatory disturbance Pain/spasm in neck Cervical disk disease

■ Vascular compression. The vertebral arteries in the neck can be compressed by the vertebrae (which they traverse), or other structures (Kamouchi, Kishikawa et al. 2003; Sakaguchi, Kitagawa et al. 2003). Arthritis, surgery, chiropractic manipulation are all possibilities.

Chiropractic manipulation

Circulatory disturbance Pain/spasm in neck Cervical disk disease

- The most common cause of vertebral dissection is chiropractic manipulation (Vibert et al, ORL, 1993).
- We recommend against chiropractic treatment of vertigo that includes "snapping" or forceful manipulation of the vertebrae in persons with dizziness or unstable necks

Pain/stiffness in neck as cause of cervical "vertigo"

Circulatory disturbance
Pain/spasm in neck
Cervical disk disease

- Dejong and Dejong classic paper (1977)
- Vestibular system needs to know where head is to do VSR
- Neck muscle spasm/pain may create false perception of neck position
- No simple mechanism to cause nystagmus

Brandt 1996; DeJong and DeJong (1977)

Cervical Spinal Stenosis

Circulatory disturbance Pain/spasm in neck Cervical disk disease

- Cervical cord compression (Benito-Leon, Diaz-Guzman et al. 1996; Brandt 1996). In this case, ascending or descending tracts in the spinal cord that interact with the cerebellum, vestibular nucleus or vestibulospinal projections are the culprit. This may be painless.
- In our opinion, based on clinical observations during videonystagmography, this is the most common mechanism of cervical vertigo.

Third type of positional vertigo: Body r.e. gravity

- Orthostatic hypotension
- CSF leak

General points

- These people are dizzy upright, not supine
- They complain of faintness rather than vertigo
- They don't have any nystagmus

BEDSIDE MANEUVERS

- BPPV
 - Dix Hallpike test
 - Head on body (lateral canal)
- Central Vertigo
- Cervical Vertigo

Diagnosis: Dix-Hallpike Maneuver

Dix-H L-canal Central VAT

Dix Hallpike Technique

- Use Frenzel goggles
- Turn head first
- Bring back briskly
- Attempt to get head 20 deg dependent
- Wait for 20 seconds
- Look what happens when sits up

Anterior canal BPPV

Dix-H L-canal Central VAT

- Dix Hallpike used again
- Vertical rather than upbeating nystagmus
- Bad ear is on OPPOSITE side as maneuver
- May see no torsion

Lateral Canal BPPV

Dix-H L-canal Central VAT

- Use video Frenzels
- Supine or caloric positioning
- Head-Right
- Head-Left

Logic of maneuver for Lateral Canal BPPV

- Direction changing nystagmus
- Geotropic or Ageotropic, depending on starting location of dirigible debris.
- Cupulolithiasis always ageotrophic.
- Most commonly seen post Epley maneuver

Central positional tests

Dix-H L-canal Central VAT

- Same as lateral canal
- Be sure to check VAT or prone (next)

"Vertebral artery" test

Dix-H L-canal Central VAT

- Use Frenzels
- Turn head to side
- Wait for nystagmus

Other ways to separate trunk from gravity

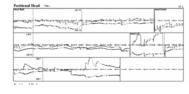
- Head prone vs. Head supine (gravity reverses, trunk doesn't).
- Head on body vs. head on trunk (better for optical frenzels)

Bedside tests for Cardiovascular Orthostasis

- Blood pressure upright and supine
- Pulse upright and supine
- Standing provoking increase of 20 in pulse drop in systolic BP suggestive
- Lots of confounding factors – anxiety for example.

ENG in Positional syndromes

- Dix-Hallpike Test: Posterior Canal BPPV
 - LatencyBurst


 - ReversalFatigability

ENG in Positional syndromes

- Positional test: Lateral Canal BPPV
 - Latency (none)
 - Burst
 - Direction changing required
 - Be sure not cervical

ENG in Positional syndromes

- Positional test: Anterior Canal BPPV
 - Dix-Hallpike maneuver
 - Latency is expectedBurst of DBN

Mixed canal BPPV

- Dix-Hallpike provokes a nystagmus that starts in one canal, persists in another canal.
- Common mix is horizontal and posterior.

For more see:

http://www.dizziness-andbalance.com/disorders/bppv/bppv.html